Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Heliyon ; 10(5): e27143, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455586

RESUMO

In this study, a novel and convenient analytical method based on salting-out-assisted liquid phase microextraction (SA-LPME) has been developed. A spectrophotometric technique was employed to quantify the concentration of phenol in drinking water and treated wastewater, as well as the phenol impurity in 2-phenoxyethanol (PE). To accomplish this, a solution containing dissolved PE was supplemented with 4-aminoantipyrine (4-AAP) and hexacyanoferrate. Subsequently, NaCl was added to induce the formation of a two-phase system, consisting of fine droplets of PE as an extractant phase in the aqueous phase. The resulting red derivative was then extracted into the extractant phase and separated through centrifugation. Finally, the absorbance of the extracted derivative was measured at 520 nm. The Response Surface Methodology (RSM) based on the Box-Behnken Design (BBD) was employed to optimize the influential factors, namely 4-Aminoantipyrine (4-AAP), buffer (pH = 10), hexacyanoferrate, and NaCl. By utilizing the optimal conditions (buffer: 50 µL, 4-AAP (1% w/v): 80 µL, hexacyanoferrate (10% w/v): 65 µL, and NaCl: 0.7 g per 10 mL of the sample), the limit of detection was determined to be 0.7 ng mL-1 and 0.22 µg g-1 for water and PE samples, respectively. The relative standard deviation (RSD) and correlation of determination (r2) obtained fell within the range of 2.4-6.8% and 0.9983-0.9994, respectively. Moreover, an enrichment factor of 65 was achieved for a sample volume of 10 mL. The phenol concentration in two PE samples (PE-1, PE-2), provided by a pharmaceutical company (Pars Sadra Fanavar, Iran), were determined to be 0.83 ± 0.05 µg g-1 and 2.70 ± 0.14 µg g-1, respectively. Additionally, the phenol index in drinking water and treated municipal wastewater was found to be 3.60 ± 1.06 ng mL-1 and 4.60 ± 1.17 ng mL-1, respectively. These mentioned samples were spiked in order to evaluate the potential influence of the matrix. The relative recoveries from PE-1, PE-2 samples, drinking water, and treated municipal wastewater samples were measured as 104.5%, 97.5%, 101.6%, and 107.8%, respectively, indicating no matrix effect.

2.
Chemosphere ; 349: 140757, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013022

RESUMO

By 2030, the UN General Assembly issued the Sustainable Development Goal 6, which calls for the provision of safe drinking water. However, water resources are continuously decreasing in quantity and quality. NO3- is the most widespread pollutant worldwide, threatening both human health and ecosystems. NO3- separation systems (NSS) using IX and membrane-based techniques (MBT) are considered practical and efficient technologies, but the management of IX waste brine (IXWB) and concentrate streams for MBT (CSM), as well as the high salt requirements for IX regeneration, are challenging from both economic and environmental perspectives. It is essential to classify the different waste management strategies in order to examine the current state of research and identify the best option to address these issues. This review provides harmonized information on IXWB/CSM management strategies. This study is the first systematic review of all papers available in the Web of Science, Scopus, and PubMed databases published until February 2023. 75% of the studies focused on the use of biological denitrification (BD) and catalytic denitrification (CD). Although innovative technologies (bio-regeneration and direct CD) have advantages over indirect processes, they are not yet practical for large-scale plants because their reliability is unknown. Moreover, the generation of NH4+ is the major challenge for application large-scale of chemical reduction. An innovative work flow diagram, challenges, and future prospects are presented. The review shows that integrating modified NSS with IXWB/CSM treatment is a promising sustainable solution, as the combination could be economically and environmentally beneficial and remove barriers to NNS application.


Assuntos
Água Potável , Humanos , Nitratos , Reprodutibilidade dos Testes , Ecossistema
3.
Environ Sci Pollut Res Int ; 30(58): 122200-122218, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37966635

RESUMO

Both ion exchange (IX) and reverse osmosis (RO) technologies are effective in removing NO3- from drinking water, but the disposal of waste streams and the large amount of salt needed for to prepare fresh brine in IX have become economic and environmental challenges. To overcome these barriers, photocatalytic denitrification (PD) using TiO2 nanoparticles in different anatase/rutile (A/R) ratios was applied to IX brine waste (IXWB) and real RO concentrate (real ROC). The synthesized samples were characterized by XRD, FESEM-EDX, and elemental mapping, BET, and UV-Vis absorption spectra. Experiments design, process optimization, and confirmation of results were performed using CCD-RSM. The study also investigated the use of glycerol, a by-product of biodiesel production, as an economic hole scavenger. The effect of different concentrations of SO4-2 on the removal efficiency of NO3- and the N2 selectivity was also investigated. The anatase phase converts to rutile with increasing calcination temperature, resulting in larger crystallites and particle sizes and narrower optical band gaps of TiO2 nanoparticles. Under optimal conditions, the mixed A (79%)/R (21%) phase of TiO2 with FA showed the highest photoactivity in conversion NO3- (89% and 95%) with N2 selectivity (83% and 85% for IXWB and real ROC, respectively). For real ROC, the use of glycerol as an economical hole scavenger resulted in 100% NO3- reduction. A possible mechanism involving glycerol and FA is discussed. Finally, optimized (A/R) ratios of TiO2 nanoparticles were successfully supported on the surface of GAC (GAC/TiO2). The composite sample can be easily recycled and reused from solution and exhibits high photoactivity even after five cycles.


Assuntos
Desnitrificação , Glicerol , Titânio
4.
Int. microbiol ; 26(4): 741-756, Nov. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-227467

RESUMO

Photosynthetic microbial fuel cell (PMFC) is a novel technology, which employs organic pollutants and organisms to produce electrons and biomass and capture CO2 by bio-reactions. In this study, a new PMFC was developed based on Synechococcus sp. as a biocathode, and dairy wastewater was used in the anode chamber. Different experiments including batch feed mode, semi-continuous feed mode, Synechococcus feedstock to the anode chamber, Synechococcus-Chlorella mixed system, the feedstock of treated wastewater to the cathode chamber, and use of extra nutrients in the anodic chamber were performed to investigate the behavior of the PMFC system. The results indicated that the PMFC with a semi-continuous feed mode is more effective than a batch mode for electricity generation and pollutant removal. Herein, maximum power density, chemical oxygen demand removal, and Coulombic efficiency were 6.95 mW/m2 (450 Ω internal resistance), 62.94, and 43.16%, respectively, through mixing Synechococcus sp. and Chlorella algae in the batch-fed mode. The maximum nitrate and orthophosphate removal rates were 98.83 and 68.5%, respectively, wherein treated wastewater in the anode was added to the cathode. No significant difference in Synechococcus growth rate was found between the cathodic chamber of PMFC and the control cultivation cell. The heating value of the biocathode biomass at maximum Synechococcus growth rate (adding glucose into the anode chamber) was 0.2235 MJ/Kg, indicating the cell’s high ability for carbon dioxide recovery. This study investigated not only simultaneous bioelectricity production and dairy wastewater in a new PMFC using Synechococcus sp. but also studied several operational parameters and presented useful information about their effect on PMFC performance.(AU)


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Synechococcus , Eletricidade , Chlorella/microbiologia , Poder Calorífico , Biomassa , Microbiologia , Águas Residuárias/microbiologia
5.
Environ Monit Assess ; 195(11): 1267, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787789

RESUMO

In the present study, the antibacterial effect of graphitic carbon nitride coated on the red ocher was investigated by the photocatalytic process to remove Gram-negative Escherichia coli bacteria. The concentration effects (0.025, 0.05, and 0.1 g/mL) of disinfectant, contact time (30, 60, and 90 min), and the number of bacteria (102, 104, and 106 CFU/mL) were examined. In this research, in each experiment, 100 mL of the sample was taken, and the test work was performed. The red ocher required for this project was obtained from Hormoz Island, Hormozgan Province, Iran. Melamine was used for the synthesis and manufacture of graphitic carbon nitride. A general-purpose media was used for microbial culture using the pour and spread plate methods, as well as an LED lamp with a wavelength of 420 nm as a light source for the photocatalytic process. To obtain the important factors, the interaction of the factors and the optimal experimental design were used through the response surface methodology (RSM) based on the Box-Behnken design. According to research findings, this method is effective in eliminating E. coli. The results showed that the increase in the amount of disinfectant from 0.025 to 0.1 g/mL and also the increase of contact time from 30 to 90 min accelerated the removal rate of E. coli. The numerical value of R2 obtained for the removal of E. coli was 0.9728, indicating good agreement between experimental and predicted data. Therefore, its utilization in water disinfection seems necessary, both to ensure human health and environmental protection.


Assuntos
Desinfetantes , Recuperação e Remediação Ambiental , Humanos , Escherichia coli , Monitoramento Ambiental
6.
Chemosphere ; 339: 139787, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567264

RESUMO

The presence of bisphenol A (BPA) in natural waters can be highly harmful due to its high persistence and adverse effects, raising concerns to remove this hazardous compound. Herein, an electro-Fenton system is proposed to eliminate BPA, wherein the iron source in the Fenton reaction is provided by its intercalation into the carbon layers of graphite. The produced heterogeneous catalyst was then coated onto the nickel foam serving as a cathode. The magnetic graphite intercalated compound (mGIC) and the modified cathode (before and after experiments) were characterized by FE-SEM, EDX, XPS, and XRD analyses. Some effective parameters, namely pH (3-9), current density (0-20 mA cm-2), and BPA concentration (0.5-20 mg L-1) were studied. At pH 3, the removal of BPA was 95.52%, and under neutral circumstances, the BPA and TOC removals were 85.70 and 58.12%, respectively at the initial BPA concentration of 10 mg L-1. The proposed system was also applied to several water sources spiked with BPA at the concentration of 5 mg L-1 under neutral pH, which exhibited considerable removal of 99.74%, 99.72%, and 92.70% for groundwater, municipal effluent wastewater, and tap water, respectively. The proposed system was applied for 15 consecutive cycles without showing significant changes in BPA removal, indicating its excellent stability and reusability. Furthermore, based on the analysis of intermediates, a possible decomposition pathway was proposed, indicating a reduction in overall toxicity. By using the proposed heterogeneous electro-Fenton system, iron waste is avoided, and operational costs of treatment can be reduced due to the absence of iron sludge production and catalyst loss.


Assuntos
Grafite , Poluentes Químicos da Água , Ferro/química , Níquel/análise , Água , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/análise , Eletrodos , Concentração de Íons de Hidrogênio , Oxirredução
7.
Environ Technol ; : 1-12, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37161857

RESUMO

In this work, polypyrrole (PPy) was synthesized on the surface of waste surgical face masks (SFM) with a novel environmentally-friendly in-situ-surface polymerization approach and used as an adsorbent for removing hexavalent chromium (Cr(VI)). In this method, the SFM surface was activated using KMnO4, resulting in the immobilization of porous MnO2, on which pyrrole can be polymerized efficiently. The novelty of this method is the presence of the oxidant on the surface before the polymerization step, which results in a better surface modification with polypyrrole. This method provides adsorbents with higher adsorption capacity compared to the conventional polymerization method with ammonium persulfate (APS). The adsorbent prepared at the mass ratios of 1.0 and 2.0; respectively, for KMnO4/SFM and pyrrole/SFM showed the highest performance. The adsorbent characterization revealed the successful polymerization of pyrrole on the surface of SFM. Reusability of the KMnO4 and pyrrole solutions were successful with remarkable results, showing the advantage of this technique compared to the conventional polymerization method with APS. The effect of different factors on the adsorption process was investigated. The removal rate was around 98% under the optimum conditions (pH, 2; adsorbent dosage, 3 g L-1; contact time, 60 min). The equilibrium data were well fitted by Langmuir isotherm (R2 = 0.9999). Kinetic investigations revealed that the adsorption process fitted well with the pseudo-second-order model. The adsorbent was regenerated for up to five cycles. One of the most important advantages of the proposed method compared to other methods is the reduction of wastewater during the synthesis process.

8.
Environ Sci Pollut Res Int ; 30(24): 66195-66208, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37095214

RESUMO

Microplastics and benzyldimethyldodecylammonioum chloride (DDBAC) enter the environment more frequently during the COVID-19 pandemic and their co-occurrence will be a potential threat to the environment in the post-pandemic era. This study investigates the performance of an electrochemical system for the simultaneous removal of microplastics and DDBAC. During experimental studies, effects of applied voltage (3-15 V), pH (4-10), time (0-80 min), electrolyte concentration (0.01-0.0.09 M), electrode configuration, and perforated anode were investigated to identify their influence on DDBAC and microplastics removal efficiency. Eventually, the techno-economic optimization yielded to evaluate the commercial feasibility of this process. The central composite design (CCD) and analysis of variance (ANOVA) are employed for evaluation and optimization of the variables and response, DDBAC-microplastics removal, and for determining the adequacy and significance of mathematical models proposed by response surface methodology (RSM). Experimental results indicate that optimum conditions are pH = 7.4, time = 80 min, electrolyte concentration = 0.05 M, and applied voltage = 12.59, in which the removal of microplastics, DDBAC, and TOC reached the maximum level, which was 82.50%, 90.35%, and 83.60% respectively. The results confirm that the valid model is adequately significant for the target response. Overall, financial and energy consumption analyses confirmed that this process is a promising technology as a commercial method for the removal of DDBAC-microplastics complexes in water and wastewater treatment.


Assuntos
COVID-19 , Poluentes Químicos da Água , Humanos , Compostos de Benzalcônio , Microplásticos , Plásticos , Pandemias , Eletrocoagulação/métodos , Cloretos , Eletrodos , Poluentes Químicos da Água/química
9.
Int Microbiol ; 26(4): 741-756, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36680697

RESUMO

Photosynthetic microbial fuel cell (PMFC) is a novel technology, which employs organic pollutants and organisms to produce electrons and biomass and capture CO2 by bio-reactions. In this study, a new PMFC was developed based on Synechococcus sp. as a biocathode, and dairy wastewater was used in the anode chamber. Different experiments including batch feed mode, semi-continuous feed mode, Synechococcus feedstock to the anode chamber, Synechococcus-Chlorella mixed system, the feedstock of treated wastewater to the cathode chamber, and use of extra nutrients in the anodic chamber were performed to investigate the behavior of the PMFC system. The results indicated that the PMFC with a semi-continuous feed mode is more effective than a batch mode for electricity generation and pollutant removal. Herein, maximum power density, chemical oxygen demand removal, and Coulombic efficiency were 6.95 mW/m2 (450 Ω internal resistance), 62.94, and 43.16%, respectively, through mixing Synechococcus sp. and Chlorella algae in the batch-fed mode. The maximum nitrate and orthophosphate removal rates were 98.83 and 68.5%, respectively, wherein treated wastewater in the anode was added to the cathode. No significant difference in Synechococcus growth rate was found between the cathodic chamber of PMFC and the control cultivation cell. The heating value of the biocathode biomass at maximum Synechococcus growth rate (adding glucose into the anode chamber) was 0.2235 MJ/Kg, indicating the cell's high ability for carbon dioxide recovery. This study investigated not only simultaneous bioelectricity production and dairy wastewater in a new PMFC using Synechococcus sp. but also studied several operational parameters and presented useful information about their effect on PMFC performance.


Assuntos
Fontes de Energia Bioelétrica , Chlorella , Synechococcus , Purificação da Água , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Eletricidade , Purificação da Água/métodos
10.
Water Environ Res ; 95(2): e10835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36708232

RESUMO

Effluents of municipal wastewater treatment plants (WWTPs) are major sources for releasing contaminants of emerging concern (CECs) into the aquatic environment, which can result in negative effects on aquatic ecosystems and, as a consequence, on humans. Herein, the graphite intercalation concept was used to synthesize heterogeneous catalysts to degrade bisphenol A (BPA) as a model CEC in municipal WWTP effluents at neutral pH. The catalyst was synthesized using the simple molten salt method and showed several benefits, such as iron leaching prevention and stability in environmental matrices. Different methods were applied to describe the catalyst's structural characteristics. The proposed system removed 99.3% of BPA in 75 min using 2 g/L of the synthesized catalyst and 1.19 g/L (5 mM) persulfate at neutral pH. Quenching experiments showed that catalytic activities and BPA removals were significantly aided by both radical and non-radical pathways through the generation of free radicals and singlet oxygen (1 O2 ). Furthermore, the reuse of recycled synthesized catalyst was investigated on treated urban wastewater, and the results showed that the catalyst could degrade BPA from the wastewater in consecutive cycles, demonstrating its applicability under real conditions. PRACTITIONER POINTS: BPA was effectively removed from the effluents of municipal WWTPs at neutral pH. A new catalyst (magnetic GIC) was fabricated for heterogeneous catalytic systems. The catalyst activates persulfate to generate free radicals and 1 O2 , indicating that radical and non-radical pathways contribute to BPA degradation. The catalyst showed the ability to remove BPA even in the sixth cycle of use, demonstrating its stability and reusability.


Assuntos
Grafite , Águas Residuárias , Humanos , Grafite/química , Oxirredução , Ecossistema , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/química , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos
11.
J Environ Chem Eng ; 9(5): 106201, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34405082

RESUMO

The detection of SARS-CoV-2 RNA in raw and treated wastewater can open up a fresh perspective to waterborne and aerosolized wastewater as a new transmission route of SARS-CoV-2 RNA during the current pandemic. The aim of this paper is to discuss the potential transmission of SARS-CoV-2 RNA from wastewater aerosols formed during toilet flushing, plumbing failure, wastewater treatment plants, and municipal wastewater reuse for irrigation. Moreover, how these aerosols might increase the risk of exposure to this novel coronavirus (SARS-CoV-2 RNA). This article supplies a review of the literature on the presence of SARS-CoV-2 RNA in untreated wastewater, as well as the fate and stability of SARS-CoV-2 RNA in wastewater. We also reviewed the existing literatures on generation and transmission of aerosolized wastewater through flush a toilet, house's plumbing networks, WWTPs, wastewater reuse for irrigation of agricultural areas. Finally, the article briefly studies the potential risk of infection with exposure to the fecal bioaerosols of SARS-CoV-2 RNA for the people who might be exposed through flushing toilets or faulty building plumbing systems, operators/workers in wastewater treatment plants, and workers of fields irrigated with treated wastewater - based on current knowledge. Although this review highlights the indirect transmission of SARS-CoV-2 RNA through wastewater aerosols, no research has yet clearly demonstrated the role of aerosolized wastewater in disease transmission regarding the continuation of this pandemic. Therefore, there is a need for additional studies on wastewater aerosols in transmission of COVID-19.

12.
J Environ Manage ; 286: 112167, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33676135

RESUMO

In this study, the cellulose sulfate/chitosan aerogel (CCA) was prepared by chitosan and sulfonated cotton, and its efficiency was assessed for lead removal from contaminated waters. The adsorbent was determined by FESEM, EDS, FTIR, and BET analysis. The batch experiments were designed by Design-Expert software. At an initial lead concentration of 300 mg L-1, the contact time of 40 min, and the temperature of 26 °C, the maximum adsorption capacity and the removal efficiency were 137.8 mg g-1 and 91.9%, respectively. Also, the effect of ions including cations and anions at 100 mg L-1 was investigated, and it was found that the presence of anions does not have much effect on adsorption, but among cations, calcium and magnesium have the inhibitor effect on adsorption due to their double plosive. Adsorption isotherms were studied at different temperatures, and the kinetics of the reaction were investigated at different concentrations. Thermodynamic parameters indicated that the adsorption process was spontaneous, endothermic, and increasing irregularity at the adsorbent level. Adsorption recovery was performed five times adsorption and de-adsorption by hydrochloric acid 1 M washing and only 10% of adsorption capacity was decreased.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Adsorção , Celulose/análogos & derivados , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Temperatura , Termodinâmica
13.
Sci Total Environ ; 752: 141850, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889277

RESUMO

Chromium (Cr) is a toxic heavy metal for environmental compartments and human health. In this study, waste polypropylene hollow filters (PPF) with an optimal pore size of 5 µm were amino-functionalized with an optimized amount of polyaniline (PANI) and polypyrrole (PPy) as an adsorbent for removing Cr (VI). The adsorbent was characterized by scanning electron microscope, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and the Brunauer-Emmett-Teller method, showing the successful polymerization of co-polymer on the surface of PPF and increasing the surface area up to 15.08 m2 g-1. A Box-Behnken design was applied by a quadratic model with 99.15% accuracy, revealing a significant impact of the initial concentration of Cr (VI) on the removal efficiency. Dynamic adsorption was conducted in a continuous and semi-continuous system with over 99% removal efficiency for various initial concentrations of Cr(VI). The fitted data showed that the adsorption process followed the pseudo-second-order kinetics and Langmuir isotherm models at the optimum pH of 2 with the predicted maximum adsorption capacity of 510.9 mg g-1 of PANI+PPy, which was significantly higher than some reported adsorbents. The effect of coexisting cations (Cu2+, Ni2+, and Zn2+) and anions (SO42-, Cl- and NO3-) on the removal efficiency revealed selective adsorption of Cr(VI) by the adsorbent. The produced adsorbent was capable of removing 76.6% of Cr(VI) from real electroplating wastewater. Regeneration of the adsorbent was performed by NaOH 1 mol L-1 up to three cycles with a 20% reduction in adsorption performance. All data showed that PPF@PANI+PPy was a promising adsorbent for Cr(VI) removal from aqueous solutions and real-world wastewater.

14.
Chemosphere ; 268: 129365, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33360140

RESUMO

This study presented chemical immobilization of an iron(III)-based metal-organic framework [NH2-MIL-101(Fe)] on the surface of sand particles and its application for Cr(VI) photocatalytic reduction using visible light. The surface of sand particles was functionalized with (3-chloropropyl)trimethoxy silane to provide the active sites for bond formation with MOF particles. Using a heat treatment step, MOF particles were bonded on the surface of sand particles, thereby providing a photocatalyst more applicable in real environments. The presence of amino-functional groups in MOF was influential in bond formation. Furthermore, they are effective in the activation of the photocatalyst under visible-light irradiation. The photocatalyst properties were investigated by FESEM, FTIR, XPS, EDS, and DRS analysis. The impact of various parameters, such as light power, irradiation and contact time, TDS impact, and pH, was examined. The composite produced by immobilization of NH2-101(Fe) on the surface of sand-Cl showed the high Cr(VI) removal efficiency (80% at 20 mg L-1) as a result of the strong chemical bond formation through the suitable functional groups incorporated in materials. Under the optimum conditions, the reduction rate reached more than 99% using irradiation by 1000 W visible light for 30 min.


Assuntos
Estruturas Metalorgânicas , Catálise , Cromo , Compostos Férricos , Luz , Oxirredução , Areia
15.
Bioresour Technol ; 316: 123950, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32795867

RESUMO

For the first time, using aluminum-boron electrodes in the electrocoagulation cell for harvesting the cultivated Chlorella microalgae and then performing a hydrothermal process of producing biofuel, mesoporous biochar was produced with an average pore diameter of 11.62 nm, a high specific surface area of 126.4 m2/g and a total pore volume of 0.55 cm3/g. Based on the chemical characterization, aluminum boride carbide (Al3B48C2) and boehmite [Al2(OOH)2] were identified in the biochar composition so that 7.17 wt% Al and 16.67 wt% B were measured on the biochar surface by EDS analysis. As the by-product of hydrothermal converting microalgae Chlorella into biofuel, the residual biochar was innovatively used to separate tetracycline from aqueous solutions. The nonlinear form of the Freundlich model fitted theadsorption equilibrium data well with the least error function value explained by the intraparticle diffusion model. The maximum adsorption capacity of 25.94 mg/g was obtained through endothermic physical adsorption.


Assuntos
Chlorella , Poluentes Químicos da Água/análise , Adsorção , Alumínio , Compostos de Alumínio , Hidróxido de Alumínio , Óxido de Alumínio , Compostos de Boro , Carvão Vegetal , Cinética , Tetraciclina/análise
16.
J Environ Manage ; 274: 111153, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32784081

RESUMO

In this study, cellulose sulfate was synthesized through sulfonation of cotton, and polypyrrole was coated on the surface of fibers. Then, the optimum ratio of pyrrole to cellulose sulfate was evaluated, and the physical, chemical, and morphological properties of the composite were assessed by using FESEM, EDS, FTIR, BET, and TGA analysis. Furthermore, adsorption of hexavalent chromium using the composite adsorbent was studied by the results of designed experiments with the Box-Behnken technique to assess the effect of pH, contact time, adsorbent dose and the initial concentration of hexavalent chromium and optimize the adsorption process. The removal percentage was 99.9% under the optimum conditions (adsorbent dose, 4 g L-1; initial concentration of Cr(VI), 200 mg L-1; pH value, 2; contact time, 200 min). The results of adsorption isotherms illustrated that the adsorption process followed Redlich-Peterson, Freundlich, Radke-Prausnitz, and UT models, and the calculated maximum adsorption capacity by the Langmuir model was 198 mg g-1. Based on the kinetic and thermodynamic studies, the adsorption process followed the intraparticle diffusion model and showed the endothermic and spontaneous adsorption with an increase in entropy on the adsorbent surface. The presence of copper, nickel and zinc cations had no adverse effect on the removal percentage of hexavalent chromium significantly. The adsorbent was reused successfully in four sequential treatments. Consequently, the synthesized adsorbent is efficient due to the high efficiency of hexavalent chromium removal percentage from electroplating effluent (99.87%).


Assuntos
Águas Residuárias , Poluentes Químicos da Água/análise , Adsorção , Celulose/análogos & derivados , Cromo/análise , Galvanoplastia , Concentração de Íons de Hidrogênio , Cinética , Polímeros , Pirróis , Termodinâmica
17.
J Environ Manage ; 270: 110883, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721322

RESUMO

In this research, recycled polyacrylonitrile fibers (PANFs) acquired from the textile recycling process were amino-functionalized in one simple step by means of ethylenediamine (EDA). The amino-functionalized polyacrylonitrile fibers (AF-PANFs) were utilized for adsorption of Hg(II) ions from aquatic media. Temperature and contact time during the synthesis were optimized by the Central Composite Design (CCD) method. FE-SEM, EDS, BET, and FT-IR analysis, and pHZPC measurement were conducted to characterize the features of the AF-PANFs. The average diameter of raw fiber was 20 µm, which increased 20 percent after functionalizing. The impact of independent parameters on the adsorption process was investigated using the Box-Behnken Design (BBD) method during the batch experiments. The column tests were conducted in a semi-continuous system with the removal efficiency of over 99% for various initial concentrations after specific cycles. Freundlich, Langmuir, UT, Redlich-Peterson, and Temkin isotherm models were employed to analyze the relation between the final concentration of Hg(II) (Co) and the equilibrium adsorption capacity (qe) of the AF-PANFs. According to the isotherm models and experimental results, the maximum qe of the AF-PANFs was 1116 mg g-1 at initial Hg(II) concentration of 850 mg L-1, contact time of 120 min, solution pH of 6, and at 40 °C. Kinetic and thermodynamic studies illustrated the approximate equilibrium time and endothermicity or exothermicity of the process. Regeneration of the AF-PANFs was accomplished for seven times without efficiency drop. The superb performance of the AF-PANFs in the presence of co-existing ions did not decline.


Assuntos
Mercúrio , Poluentes Químicos da Água/análise , Resinas Acrílicas , Adsorção , Etilenodiaminas , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
18.
Chemosphere ; 251: 126309, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443244

RESUMO

Conventional techniques used for reduction of Cr(VI) in wastewater product great amounts of metal sludge due to the use of reducing chemicals. Since in electrochemical process, the reducing agent is the electron, so the main advantage of this method is its adaptability to the environment. The aim of the current study is to reduce Cr(VI) from electroplating wastewater by the electrochemical method and to adsorb Cr(III) by cellulose sulfate adsorbent. Furthermore, to enhance the reduction efficiency of Cr(VI), the cathode was modified with Pd nanoparticles. In the present study, recovery in the electrochemical column was conducted continuously and semi-continuously. In addition, the effect of pH, amperage, flow rate, and initial concentration of Cr(VI) was investigated. To remove Cr(III) from the wastewater, the cellulose sulfate adsorbent was provided from modification of cotton health wastes. The highest recovery rate (99.63%) was witnessed at pH = 1.5, 1 A amperage, flow rate of 4.24 mL min-1, and initial concentration of 50 mg L-1. The sewage was removed from the system after several consecutive cycles and during 20-55 min reached recovery efficiency of 99.99%. Based on the results, pH had the highest effect on the process. The optimum removal percentage was 85.74% occurred at a pH of 5.6, chromium concentration of 150 mg L-1, and adsorbent concentration of 400 mg L-1. The removal rate of the pollutant was 97.32%, done by cellulose sulfate adsorbent.


Assuntos
Cromo/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Adsorção , Celulose/análogos & derivados , Cromo/química , Cobre , Eletrodos , Galvanoplastia , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas , Paládio , Esgotos , Poluentes Químicos da Água/química
19.
J Environ Manage ; 264: 110409, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250883

RESUMO

In this research, a unique continuous electrochemical cell was designed and applied for the disinfection of groundwater and simultaneous Cr(VI) reduction and Cr(III) precipitation. Discarded cigarette filters (DCFs) were utilized as an efficient bed for palladium nanoparticles (PdNPs) immobilization located between porous anode and cathode made of graphite felt. The characterization of the bed was performed using FE-SEM, EDS, BET, and FT-IR analysis. The results confirmed the distribution of palladium nanoparticles on the surface of DCFs. The proposed design for electrochemical cell obviated the need to divide the anolyte and catholyte because the anode was located at the outlet of the cell, thereby avoiding the reaction between hydrogen radicals produced on the surface of PdNPs and oxygen and chlorine produced in the anode. The hydrogen gas produced in the cathode was converted to hydrogen radicals, acting as the most prominent species for the reduction. Hydroxide ions produced in the cathode increased the pH of the solution between electrodes, resulting in the precipitation of Cr (III) with an efficiency of 96%. Furthermore, free chlorine at the concentration of 1 mg L-1 was generated through chloride ion oxidation in the anode, which can be effective for disinfection. The effect of initial Cr (VI) concentration (C0), flow rate (Q), and current (I) was investigated, and the maximum removal efficiency (99.7%) was observed at the flow rate of 5 mL min-1 and current of 0.05 A, respectively. No interference ensued from the various coexisting ions in groundwater. The findings of this study suggested that the proposed electrochemical cell is capable of in-situ total chromium removal and free chlorine production in groundwater simultaneously.


Assuntos
Água Subterrânea , Nanopartículas Metálicas , Poluentes Químicos da Água , Cromo , Oxirredução , Paládio , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Water Environ Res ; 92(4): 588-603, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31701622

RESUMO

The removal of heavy metal ions and organic materials from wastewater due to their toxicity is necessary. In the present study, the titanium dioxide/zinc oxide (TiO2 /ZnO) nanocomposite has been coated on the sewage sludge carbon (SSC) surface and its application was investigated for the adsorption of Ni(II), Cu(II), and chemical oxygen demands (COD) reduction from aqueous solutions and industrial wastewaters in Eshtehard, Iran. The effect of adsorption parameters in a single system such as TiO2 /ZnO ratio, TiO2 /ZnO concentration, pH, adsorbent dosage, contact time, ionic strength, temperature, and initial concentrations of Ni(II), Cu(II), and COD was investigated on the adsorption capacity of synthesized SSC/TiO2 /ZnO adsorbent. The pseudo-second order and Redlich-Peterson isotherm models were best described the kinetic and equilibrium data of Ni(II), Cu(II), and COD sorption. The maximum monolayer sorption capacities of Ni(II), Cu(II), and COD were found to be 62.3, 75.1, and 1,120.3 mg/g, respectively. The central composite design was used to investigate the interaction effects of pH and initial concentrations of Ni(II), Cu(II), and COD on the simultaneous removal of Ni(II), Cu(II), and COD from aqueous solutions in a ternary system. The potential of synthesized SSC/TiO2 /ZnO adsorbent was investigated for Ni(II), Cu(II), and COD adsorption from industrial wastewaters of Iran. PRACTITIONER POINTS: The novel sewage sludge carbon/TiO2 /ZnO adsorbent was synthesized. Adsorption of Ni(II), Cu(II), and chemical oxygen demands (COD) from industrial wastewaters was investigated. Maximum Ni(II), Cu(II), and COD sorption capacities were 62.3, 75.1, and 1,120.3 mg/g. Simultaneous removal of Ni(II), Cu(II), and COD was investigated in a ternary system.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Óxido de Zinco , Adsorção , Análise da Demanda Biológica de Oxigênio , Carbono , Cobre , Concentração de Íons de Hidrogênio , Irã (Geográfico) , Cinética , Esgotos , Soluções , Titânio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...